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Abstract. Event-based model (EBM) is a flexible way to model the
progression of Alzheimer’s disease. The core of EBM is to use an order-
ing of events to build the trajectory of disease progression. The ordering
of events is usually inferred from the data using optimization, hence may
suffer from local optima and computational complexity. This paper math-
ematically proves that this ordering can be directedly determined by the
cumulative distribution function (CDF) of the data. From this stand-
point, we formulate two properties—order preserving property (OPP)
and distance preserving property (DPP)—that an estimated trajectory
should satisfy. We show that a trajectory that satisfies these two prop-
erties is equivalent to a reparametrized version of the true trajectory.
Furthermore, we show that one such reparametrized trajectory can be
directedly obtained from the CDF of the data by filtering. We call the
algorithm filtered trajectory recovery (FTR). Extensive experiments on
simulated data and real data from ADNI show that FTR can retrieve a
trajectory that provides a better estimation of the event order and stages,
disentangle the progression heterogeneity, without assuming a paramet-
ric form of the trajectory function. The code is released at https://github.
com/Jiangchuan-Du/FTR-master.

Keywords: Alzheimer’s Disease · Disease Progression Model ·
Event-based Model

1 Introduction

Alzheimer’s disease is characterized by progressive loss of the neurons in the
brain. The disease usually starts years before the symptoms emerge and pro-
gresses heterogeneously [1]. One way to quantify this heterogeneity is to group
the population into subtypes: each individual belongs to a subtype and each
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subtype corresponds to a prototypical progression trajectory. The progression
trajectory can be measured by various biomarkers from neuroimaging scans,
clinical scores, cerebrospinal fluid (CSF), etc. Disease progression models (DPM)
aim to recover the progression trajectory from a collection of short individual
time series of these biomarkers. Applying DPMs to discover these trajectories is
quite significant in providing biological insight into the underlying disease mech-
anism. It also enables staging and subtyping the patients, hence benefits patient
stratification and facilitates precision medicine in clinical trials.

A general DPM assumes that the data points follow

s ∼ h(s), x ∼ N (f(s),Σ(s))

where s is the stage (time from the beginning of disease progression), h : [0, 1] →
R+ is the density function for sampling s, whose domain is the timeline normal-
ized to [0, 1]. Given sampled s, an observed data point x = [x1, . . . , xB ] is sam-
pled from a Gaussian distribution with mean f(s) and covariance matrix Σ(s),
where B is the number of biomarkers, f : [0, 1] → R

B : s �→ (f1(s), . . . , fB(s)) is
the entire trajectory of disease progression, Σ(s) is the noise covariance matrix
at s. Without loss of generality, we assume that the trajectory of each biomarker
fj is a monotonically increasing function. Given a set of observed data points,
a DPM tries to estimate the underlying trajectory f and possibly noise Σ.

Fig. 1. Motivation of directly estimat-
ing the trajectory using the data distri-
bution. The first column shows the tra-
jectory modeled by the original EBM
and SuStaIn (see details in Sect. 2).
The second, third, and fourth columns
show the histograms, CDF, and inverse
CDF of the biomarkers, respectively,
when h is a uniform distribution.

Previous studies that try to solve
the problem can be categorized into
event-based models (EBM) [2–8], parame-
tric/non-parametric models [9–11], differ-
ential equation models [12,13], and deep
learning [14,15]. The EBMs model the
trajectory as a transition from normal
to abnormal using a set of predefined
events [2–5,8]. This event-based strategy
is extended to model a more flexible piece-
wise linear function as well as multiple
trajectories for quantifying the progres-
sion heterogeneity [6,7]. Parametric/non-
parametric models characterize the con-
tinuous longitudinal progress of biomark-
ers by a parametric (e.g. sigmoid [9])
or a non-parametric (e.g. Gaussian pro-
cess [10,11]) function of time and other
variates. By assuming that toxic proteins
spread along the neural network in the
brain, differential equations have been
introduced to model the progression of brain biomarkers [12,13]. The last one,
deep learning techniques, in particular recurrent neural networks (RNN), can
also predict time series progress in dealing with longitudinal data [14,15].

Despite a plethora of ways to model the trajectory, they more or less made
some assumptions on the form of the trajectory function. We observe that a
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Fig. 2. Overview of the methodology. In FTR (first row), given data (gray dots) gen-
erated from a trajectory (time indicated by the colorbar on the left), the CDF of each
biomarker Fj(x) is deconvolved by the noise density function N (0, σ2) to get H ◦ f−1

j ,

which is inverted to obtain a reparametrized trajectory f̂j = fj ◦ H−1. Combining all
such f̂j ’s gives our estimated trajectory. In the second row, FTR is extended to cluster
data points from 3 trajectories via a kmeans-like algorithm. (Color figure online)

trajectory is closely related to the cumulative distribution function (CDF) of
the data in the EBM. For example, Fig. 1 shows two ways in a EBM to model
the trajectory of two biomarkers (first column). Under a uniform distribution
assumption on h, we see that after calculations of the histogram and CDF, the
inverse CDF exactly reflects the true trajectory. This motivates a way to retrieve
the trajectory directly from the data distribution.

In this paper, we developed a mathematical theory on using the data dis-
tribution for trajectory recovery. First, we show that a closed-form solution to
EBM is available by using the CDF of the data (Sect. 2). Then, we extend the
trajectory to an arbitrary continuous function by generalizing the idea of EBMs
to an order-preserving property (OPP) and a distance-preserving property (DPP)
(Sect. 3). We show that a trajectory satisfying these two properties is equivalent
to a reparametrized trajectory (Proposition 2). Finally, we show that a par-
ticular reparametrized trajectory can be retrieved by deconvolving the CDF of
the observed data (Theorem 3). We call this process filtered trajectory recovery
(FTR) (see Fig. 2). Extensive experiments on both simulated datasets and a real
dataset are conducted to validate the proposed FTR (Sect. 4).

2 Event-Based Model

The EBMs use an order of the events to define the entire trajectory. An event
is the stage s when a biomarker reaches a specific target e for the first time, i.e.,
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s = inf{t : fj(t) ≥ e}. An order of a sequence of B events (s1, . . . , sB) is a bijec-
tion o : {1, . . . , B} → {1, . . . , B} that rearranges the sequence to (so1 , . . . , soB

)
where oi (denoting o(i)) is the event index at position i in the rearranged
sequence. A rank r : {1, . . . , B} → {1, . . . , B} is the inverse function of o. Hence,
ri is the position of the ith event in the rearanged sequence.

2.1 Representative EBMs

In the original EBM, there is only 1 target e for each biomarker, leading to B
events {sj : j = 1, . . . , B} in total [2]. The trajectory of the jth biomarker is
assumed to be a step function with two outputs—normal, abnormal—with the
event sj marking the time of change from normal to abnormal. Given an order
of these events, the trajectory is approximated by the corresponding ranks:

fj(s) =

{
μ0

j

μ1
j

if s < rj

if s ≥ rj

where rj is the rank of sj in the order, μ0
j is the expected value when the jth

biomarker takes a normal value and μ1
j represents the expected abnormal value.

Note that the timeline is not normalized to 0–1 in this notation. Based on the
trajectory definition, a probabilistic model is introduced to estimate the order
of biomarker change given a set of data points.

Considering that a step function for approximating the trajectory is far
away from satisfactory, an improvement—SuStaIn—is later proposed to approx-
imate the trajectory by piecewise linear functions [6]. In SuStaIn, multiple
event targets are defined e1 < e2 < · · · < eM and they have correspond-
ing events {sjl : j = 1, . . . , B, l = 1, . . . , M}, i.e. sjl = inf{t : fj(t) ≥ el}.
By fixing sjM to be the endpoint on the timeline, SuStaIn uses an order of
S = (s11, . . . , s1,M−1, s21, . . . , sB,M−1) to define the trajectory:

fj(s) =

⎧⎪⎪⎨
⎪⎪⎩

e1−e0
rj1−rj0

(s − rj0) + e0, if rj0 ≤ s < rj1

...
eM−eM−1

rjM−rj,M−1
(s − rj,M−1) + eM−1, if rj,M−1 ≤ s ≤ rjM

where rjl is the rank of sjl in the order for l ∈ {1, . . . , M − 1}, rj0 = 0 and
rjM = B(M − 1)+1 are the start and end points on the timeline. Similar to the
original version, a probabilistic model is introduced to estimate the order of S.

2.2 Closed-Form Solution

Reviewing the above models, we see that to find the order that fits the data,
we need to do optimization in a permutation space. When the dimension of the
space is large, both the complexity and the robustness of finding the correct
order may not be ideal. Following the intuition in Fig. 1, we show in Theorem 1
that a closed-form solution to EBMs is available under mild conditions.
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Theorem 1. Suppose the data point random variable x = [x1, . . . , xB ] is gen-
erated by

s ∼ h(s), xj ∼ N (fj(s), σ2),

where h : [0, 1] → R+ is a density function and

fj(s) =

{
0,

1,

if 0 ≤ s < aj ,

if aj ≤ s ≤ 1.

Then, for any set of change points {aj ∈ [0, 1]}, σ2 and h, the sequence
(â1, . . . , âB) defined by âj = Fj( 12 ) has the same order as (a1, . . . , aB), where
Fj is the CDF of the marginal distribution p(xj).

Sketch of Proof. In Fj(x) =
∫ x

−∞
∫ 1

0
p(z; fj(s), σ2)h(s)dsdz, the integration over

s from 0 to 1 can separated into two ranges: [0, aj ] and [aj , 1]. Using the defi-
nition of fj and this separation, we can show Fj(x) = H(aj)φ(x; 0, σ2) + [1 −
H(aj)]φ(x; 1, σ2), where φ(x; 0, σ2) is the CDF of N (x; 0, σ2) and H is the CDF
of h. Then we can show Fj( 12 ) − Fi( 12 ) > 0 for any aj > ai.

Theorem 1 can be extended to monotonically increasing step functions with
multiple outputs, e.g. 0, 1, 2, . . . ,M − 1. A more interesting question is: Can we
take the limit to make the output interval arbitrary small such that a continuous
function can be estimated? In the next section, we present a way to achieve this.

3 Filtered Trajectory Recovery

Here, we assume that each fj is strictly monotonically increasing such that
the event for a biomarker reaching e can be written as f−1

j (e). Recalling the
EBMs, we formulate two properties that an acceptable trajectory should satisfy
to achieve our goals: finding the correct order of events and clustering the data
points.

3.1 Theory

First, we generalize the concept of retrieving the correct order of the events
to an order-preserving property. This property ensures that for any events, an
estimated trajectory has the same order as the true one that generates the data.
In addition, to make the estimated one be able to cluster the data points, we
propose a distance-preserving property. For an estimated trajectory denoted by
f̂ : [0, 1] → R

B : f̂(s) = (f̂1(s), . . . , f̂B(s)) and the true one by f : [0, 1] → R
B :

f(s) = (f1(s), . . . , fB(s)), these two properties are formalized as:

1. The order-preserving property (OPP): For any j, k, e, e′, if f−1
j (e) < f−1

k (e′),
then f̂−1

j (e) < f̂−1
k (e′).

2. The distance-preserving property (DPP): For any x ∈ R
B , d(x, f) = d(x, f̂),

where d(x, f) = mins ‖x − f(s)‖.
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The order-preserving property implies that for any set of events {f−1
j (el)}, its

order is the same as that from {f̂j
−1

(el)} hence f̂ suffices to be used to retrieve
the correct order of biomarker change. The distance-preserving property implies
that the range of f̂ is the same as the range of f , i.e. the trajectory lies on
the same 1-dimensional manifold embedded in the B-dimensional space. This
property enables us to use a clustering algorithm to cluster the data points.
These two properties together define an admissible trajectory in estimation.

Then we ask: What kind of trajectories would satisfy these two properties?
The proposition below suggests that if we reparametrized f(s) to f ◦ H−1(t)
by using a monotonically increasing bijection H, this reparametrized trajectory
f ◦ H−1 would satisfy these two properties.

Proposition 2. A trajectory f̂ satisfies the order-preserving property and the
distance-preserving property if and only if f̂ = f ◦ H−1 where H : [0, 1] → [0, 1]
is a continuous bijection that increases monotonically.

Sketch of Proof. The sufficiency is straightforward since f−1
j (e) < f−1

k (e′)
implies H ◦ f−1

j (e) < H ◦ f−1
k (e′). For the necessity, we can define Hj = f̂−1

j ◦ fj

for each j and show Hj = Hk by contradiction (assuming Hj(s0) > Hk(s0) for
some s0, choose s and s′ around s0 such that s < s′, show that f̂−1

j (e) > f̂−1
k (e′)

where e = fj(s) and e′ = fk(s′)).
Now we have identified the space of trajectories that we are interested in. The

next natural question is: Can we estimate such a reparametrized trajectory from
the data? Note that all H’s that are continuous, bijective, and monotonically
increasing would suffice for constructing f ◦H−1. For example, let H be the CDF
of h, the density function of the stage, i.e. H(s) =

∫ s

−∞ h(τ)dτ , then f ◦ H−1

would satisfy the two properties. An important theoretical result we derive in
this paper is that for H being the CDF of h, f ◦ H−1 can be directly obtained
by deconvolving the marginal CDF of each biomarker:

Theorem 3. Suppose the data point random variable x = [x1, . . . , xB ] is gen-
erated by

s ∼ h(s), xj ∼ N (fj(s), σ2
j )

where fj : [0, 1] → [fj(0), fj(1)] is a continuous bijection that monotonically
increases. Then, the marginal CDF of xj, Fj, is a result of convolving H ◦ f̃−1

j

with the noise density function N ( · ; 0, σ2
j ):

(H ◦ f̃−1
j ) ∗ N ( · ; 0, σ2

j ) = Fj

where H is the CDF of h, and f̃−1
j : R → [0, 1] is an augmented version of f−1

j

that extends its domain to (−∞,+∞):

f̃−1
j (y) =

⎧⎪⎨
⎪⎩

0, if y < fj(0),
f−1

j (y), if fj(0) ≤ y ≤ fj(1),
1, if y > fj(1).

In particular, when σj = 0, we have H ◦ f̃−1
j = Fj.
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Sketch of Proof. Let φ(x;μ, σ2) be the CDF of N (x;μ, σ2), we can show Fj(x) =∫ 1

0
h(s)φ(x; fj(s), σ2

j )ds. Let y = fj(s), Fj(x) =
∫ +∞

−∞
dH◦f̃−1

j (y)

dy φ(x; y, σ2
j )dy.

Using integration by parts, Fj(x) = φ(x − y; 0, σ2
j ) · H ◦ f̃−1

j (y)
∣∣∣+∞

−∞
− ∫ +∞

−∞ H ◦
f̃−1

j (y)dφ(x−y; 0, σ2
j ) where the first term vanishes and the second is the result.

Theorem 3 verifies our intuition in Fig. 1. If h is a uniform distribution on
[0, 1], H would be the identity function, hence fj is directly related to the CDF
Fj via convolution. Moreover, when σj = 0, the CDF is the inverse function of
the trajectory fj . Note that without assuming a uniform distribution on h, the
reparametrized trajectory {fj ◦ H−1} still satisfies the OPP and DPP, hence
suffices for ordering any events and separating the data points. This suggests a
new algorithm to estimate the progression trajectory and cluster the data points.

3.2 Algorithm

According to Theorem 3, we only need to deconvolve the marginal CDF Fj using
the noise density N ( · ; 0, σ2

j ) to obtain H ◦ f̃−1
j . Then, H ◦ f̃−1

j can be truncated
to H ◦ f−1

j according to some range [fj(0), fj(1)] and the inverses {fj ◦ H−1 :
j = 1, . . . , B} can be combined to obtain the reparametrized trajectory f ◦ H−1

(see Fig. 2). The details are given below.
Let H ◦ f̃−1

j , N ( · ; 0, σ2
j ), and Fj be discretized into s̃ = [0l0 , s,1l1 ] ∈ R

n+2l,
g ∈ R

2l+1, and Fj ∈ R
n respectively, where l0 and l1 are the lengths of the

leading zeros and trailing ones. The convolution (H ◦ f̃−1
j ) ∗ N ( · ; 0, σ2

j ) = Fj

can be discretized into Ks̃ = Fj , where K ∈ R
n×(n+2l) is a circulant matrix

with K(i, i : i + 2l) = g. Let K = [K1,K2,K3] where K1 has l0 columns, K3

has l1 columns. The discretized equation becomes K2s+K31l1 = Fj , or As = b
with A = K2 and b = Fj − K31l1 . Hence, s can be retrieved by minimizing
‖As−b‖. To keep the trajectory smooth, we add a second derivative Laplacian
term Ls where L(i, i : i + 2) = [−1, 2,−1]. The final objective function is

J(s) = ||As − b||2 + λ||Ls||2 s.t. 0 ≤ sj ≤ sj+1 ≤ 1,

which is a convex function with inequality constraints and can be solved by
standard methods. In this work, we assume fj(0) is known to be 0 and fj(1) is
unknown. Hence l0 = 2l while l1 needs to be searched in a range to minimize
J(s). The resulting s is a discretized version of H ◦ f−1

j .
This technique can be extended to cluster data points generated from mul-

tiple trajectories {fk : k = 1, 2, . . . ,K}. Similar to k-means clustering, we can
add a cluster label to each data point and alternately update the reparametrized
trajectories, the cluster labels, and the noise variances (see Fig. 2). Note that the
estimated trajectories f̂k = fk ◦ (Hk)−1 may have different Hks. To make their
timelines be matched, we further reparameterize the trajectories by Euclidean
arc length from the origin.
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4 Results

4.1 Datasets

We use both simulated datasets and a real dataset for validation. The real dataset
is from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [16]. For each
dataset, besides running the proposed FTR, we also run its variation without
filtering (referred to as FTR w.o.f., i.e. without the deconvolution procedure) for
ablation study, and the original EBM (referred to as EBM) [2], the discriminative
EBM (referred to as DEBM) [3], and SuStaIn [6] for comparison.

Simulated Datasets. For simulation, we create datasets for two experiments:
(i) stage inference with a single trajectory; (ii) subtype and stage inference with
multiple trajectories. In both cases, a trajectory is simulated by the following
two ways:

1. Sigmoid function. The trajectory of the jth biomarker is assumed to fol-
low fj(s) = 1/(1 + e−αj(s−βj)), where αj (controlling the slope of increase)
is randomly sampled from a Gaussian distribution, αj ∼ N (10, 4), and βj

(controlling the position of change) is sampled from a uniform distribution,
βj ∼ U([0.1, 0.9]). We shift each fj vertically so that it starts at zero.

2. Event permutation. Assume event targets el = l for l = 1, 2, 3 and e4 = 5, and
corresponding events sjl = f−1

j (el). Randomly order (s11, . . . , s1,3, . . . , sB,3)
with rank r and constraint rjl < rj,l+1,∀j, l. Then, for each j, interpolate
{(rjl, el) : l = 0, 1, . . . , 4} (rj0 = 0 and e0 = 0) linearly to obtain fj .

Given the generated trajectory f , the data points are generated by sampling
stage s from a uniform distribution U([0, 1]), and then sampling N (f(s), σ2I)
(covariance (5σ)2I for event permutation). For multiple trajectories {fk : k =
1, . . . , K} (K = 3), a data point also has an associated subtype index z, which is
sampled from a categorical distribution z ∼ Cat(1/K, . . . , 1/K) that puts equal
probablity to each subtype. A data point is generated by first sampling z, then
sampling from trajectory fz.

The TADPOLE dataset. The Alzheimer’s Disease Prediction Of Longitu-
dinal Evolution (TADPOLE) dataset contains preprocessed measurements from
brain imaging, CSF, scores from cognitive tests, demographics, and genetics from
ADNI 1, ADNI GO, and ADNI 2 [16]. There are 1737 subjects (age: 73.8 ± 7.2,
sex: 55% male) in its “D1 D2” dataset, and each subject has multiple visits with
an interval of 0.5 or 1 year (also with missing visits). At each visit, a subject is
also diagnosed with 3 labels: cognitively normal (CN), mild cognitive impairment
(MCI), or AD.

We conducted 2 experiments. The first chooses 7 biomarkers including CSF
measurements (ABETA, TAU and p-TAU), brain region volumes (Hippocam-
pus, WholeBrain) and cognitive scores (MMSE, ADAS-Cog-13) for validating
a single progression trajectory. In the second one, volume measurements of 84
brain regions from MRI scans are selected to identify subtypes with different spa-
tiotemporal atrophy patterns. We remove the visit records with missing data,
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Fig. 3. Comparison of (a) rank error for a single trajectory and (b) Rand index for
multiple trajectories in the simulation. Mean with standard deviation (shown in shade)
is calculated over 10 randomly generated datasets for each number of biomarkers and
each method (5 for SuStaIn). The first and the second rows correspond to using the
sigmoid function and event permutation respectively.

leaving 693 subjects with 1812 time points in the first experiment and 1096 sub-
jects with 3929 time points (1262 CN, 1732 MCI and 935 AD) in the second
experiment. In both the experiments, we regress out age, sex and intra-cranial
volume (ICV) and normalize the biomarker values into z-scores (the first exper-
iment uses the normal group from fitted GMMs in [3] and the second one uses
the CN group from the labels).

4.2 Simulation

In the simulation, we randomly generate a dataset containing 3000 data points
10 times for different numbers of biomarkers (B = 5, 10, . . . , 30) and different
noise levels (σ = 0.01, 0.1, 0.2). For the single trajectory experiment, we also ran
EBM [2] and DEBM [3] for comparison. For these two EBMs, points with stage
s < 0.1 were set to CN and the others were set to AD. Since their objective is
to estimate the correct order of biomarkers, we used the mean squared error of
the ranks of the biomarkers as a metric. The results are shown in Fig. 3(a). We
see that FTR has the lowest rank error in both types of trajectories, followed
by FTR w.o.f., DEBM and EBM. Note that the inferior performance of EBM
and DEBM in the small noise case (σ = 0.01) may be caused by their small
estimated variances from the data.

For the multiple trajectory experiment, we also ran SuStaIn for comparison.
For SuStaIn, we set 0.1, 0.5, 0.9, 1 (resp. 1, 2, 3, 5) for the event targets in the
sigmoid function (resp. event permutation) simulation. For FTR, we ran the
clustering algorithm 30 times with random initial label assignments and the
best result in terms of reconstruction error was chosen. Since the objective of
this task is to cluster the data points, we use Rand index as a metric. The results
are shown in Fig. 3(b). We see that again FTR exceeds the baseline method in
terms of clustering accuracy in most of the cases. Note that SuStaIn runs much
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slower than our method hence it was only run on 5 random datasets at each
number of biomarkers and also at maximum 15 biomarkers (see Table 1).

Fig. 4. Results of FTR on the 7 biomark-
ers from TADPOLE. (a) Estimated trajec-
tory. (b) Distribution of estimated stages.
(c) Mean ROC curves (standard deviation
indicated by shade) for classifying AD from
CN using the estimated stages from 5-fold
cross validation.

Table 1. Running time (in seconds)
of all the methods on a laptop with a
Ryzen 7 4800H CPU and 16 GB mem-
ory. FTR ran much slower when K = 3
because the algorithm was repeated 30
times with random initializations.

Model # of

subtypes

# of biomarkers

5 10 15

EBM K=1 7.59 13.5 13.2

DEBM K=1 3.17 6.93 20.6

SuStaIn K=3 1299 6813 31099

FTR w.o.f. K=1 0.28 0.44 0.60

K=3 58.1 113 138

FTR K=1 6.34 12.6 19.7

K=3 760 1356 2062

4.3 ADNI

For the 7 biomarker experiment, the normalized z-scores of MMSE, Hippocam-
pus, WholeBrain and ABETA decrease over time hence we add a minus sign to
make them increase. The estimated trajectory from FTR is shown in Fig. 4(a).
We can see that with a proper event target (e = 1), the order of the
events—ABETA, MMSE, ADAS13, Hippocampus, TAU, p-TAU, WholeBrain—
is exactly the same as that obtained from DEBM [3]. To validate the inferred
stages, we split the data into a training set and a test set, trained FTR on the
training set, inferred stages on the test set using the estimated trajectory, and
classify AD from CN using these stages. The ROC curves from 5-fold cross vali-
dation show that FTR outperforms EBM and DEBM in this classification task,
suggesting the superiority of our stage inference (see Fig. 4(c)).

The last experiment is on using FTR to identify progressive atrophy patterns
in 84 brain regions measured by MRI scans. Following previous studies [1,6], we
use 3 subtypes in FTR. The trajectories are visualized by showing stages 0.2, 0.4,
0.6, 0.8, 1 in BrainPainter [17] (see Fig. 5(a)). We see that a typical progression
(subtype 2) is identified along with 2 branches (subtype 1 and 3). We also plot
the cognitive scores versus time from baseline for each subtype in Fig. 5(b). We
can observe that the progression rate of cognitive scores calculated from linear
regression is the largest for subtype 3, followed by subtype 2 and 1, which is
consistent with the severity of atrophy progression from imaging.
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Fig. 5. Three subtypes identified by applying FTR on 84 brain regions from TAD-
POLE. (a) Visualization of brain atrophy patterns at stage 0.2, 0.4, 0.6, 0.8, 1. (b)
Linear regression of clinical symptom progression measured by ADAS-Cog-13.

5 Discussion and Conclusion

The results presented above show that the event order estimated from FTR is
the same as that obtained from the EBM while the inferred stages are better
to separate AD and CN. This is the first significant finding, which implies the
superiority of our continuous trajectory estimation. The second, potentially more
interesting, finding is that FTR identifies 3 fine-grained trajectories of spatiotem-
poral atrophy progression in 84 brain regions. Whether this subtyping scheme
has any connection with the previous limbic predominant, typical, hippocampal
sparing subtypes [1] will be investigated in the future.

The theory we developed on the relation between the disease progression
trajectory and the CDF of the data could also have significant implications.
Compared to the previous studies that make a strong assumption on the form
of the trajectory function, we only assume that the function is monotonically
increasing. This makes our method more flexible to retrieve a wide range of
trajectories. Though the current version lacks some features like model selection,
uncertainty estimation, we plan to solve these in the future.

In conclusion, this paper mathematically proves that the disease progression
trajectory can be directedly recovered from the CDF of the data. Based on this
theory, we propose a novel FTR algorithm to estimate the trajectories and find
the subtypes. FTR outperforms various state-of-the-art EBMs in our extensive
simulation. It identifies a single trajectory using CSF, MRI biomarkers and cog-
nitive scores. It also identifies 3 subtypes that differ in spatiotemporal patterns
of progressive atrophy using volumes of 84 brain regions from MRI scans.
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